Abstract
This paper investigates the problem of L 2 – L ∞ filter design for a class of stochastic systems with time-varying delay. The addressed problem is the design of a full order linear filter such that the error system is asymptotically mean-square stable and a prescribed L 2 – L ∞ performance is satisfied. In order to develop a less conservative filter design, a new Lyapunov-Krasovskii functional (LKF) is constructed by decomposing the delay interval into multiple equidistant subintervals, and a new integral inequality is established in the stochastic setting. Then, based on the LKF and integral inequality, the delay-dependent conditions for the existence of L 2 – L ∞ filters are obtained in terms of linear matrix inequalities (LMIs). The resulting filters can ensure that the error system is asymptotically mean-square stable and the peak value of the estimation error is bounded by a prescribed level for all possible bounded energy disturbances. Finally, two examples are given to illustrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.