Abstract

This is the first time for studying the issue of finite-time H∞ synchronization control for the coronary artery chaos system (CACS) with input and state time-varying delays. Feedback control is planned for finite-time of synchronization CACS. By constructing the Lyapunov-Krasovskii functional (LKF) is derived for finite-time stability criteria of CACS with interval and continuous differential time-varying delays. We use Wirtinger-based integral inequality to evaluate the upper bound of the time derivative of the LKF. We apply the single integral form and the double integral form of the integral inequality, according to Wirtinger-based integral inequality, to ensure that the feedback controller for synchronization has good performance with disturbance and time-varying delay. The new sufficient finite-time stability conditions have appeared in the form of linear matrix inequalities (LMIs). Numerical checks can be performed using the LMI toolbox in MATLAB. A numerical example is presented to demonstrate the success of the proposed methods. This resultant is less conservative than the resultants available in the previous works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.