Abstract
We introduce a Tucker tensor cross approximation method that constructs a low-rank representation of a d-dimensional tensor by sparsely sampling its fibers. These fibers are selected using the discrete empirical interpolation method (DEIM). Our proposed algorithm is referred to as DEIM fiber sampling (DEIM-FS). For a rank-r approximation of an O(Nd) tensor, DEIM-FS requires access to only dNrd−1 tensor entries, a requirement that scales linearly with the tensor size along each mode. We demonstrate that DEIM-FS achieves an approximation accuracy close to the Tucker-tensor approximation obtained via higher-order singular value decomposition at a significantly reduced cost. We also present DEIM-FS (iterative) that does not require access to singular vectors of the target tensor unfolding and can be viewed as a black-box Tucker tensor algorithm. We employ DEIM-FS to reduce the computational cost associated with solving nonlinear tensor differential equations (TDEs) using dynamical low-rank approximation (DLRA). The computational cost of solving DLRA equations can become prohibitive when the exact rank of the right-hand side tensor is large. This issue arises in many TDEs, especially in cases involving non-polynomial nonlinearities, where the right-hand side tensor has full rank. This necessitates the storage and computation of tensors of size O(Nd). We show that DEIM-FS results in significant computational savings for DLRA by constructing a low-rank Tucker approximation of the right-hand side tensor on the fly. Another advantage of using DEIM-FS is to significantly simplify the implementation of DLRA equations, irrespective of the type of TDEs. We demonstrate the efficiency of the algorithm through several examples including solving high-dimensional partial differential equations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have