Abstract
A Degree Sum Condition for Hamiltonian Graphs
Highlights
In this note, only finite undirected graphs without loops or multiple edges are considered
A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G
We present the following sufficient condition involving σ2, δ, and κ for Hamiltonian graphs
Summary
Only finite undirected graphs without loops or multiple edges are considered. For a vertex x in G, N (x) denotes the set of those vertices which are adjacent to x in G. A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. If C is a cycle of G with a given orientation, we use x+ to denote the successor of a vertex x on C along the orientation of C.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have