Abstract

In conventional structural health monitoring (SHM), a sensor array enables to localize a potential defect by using at least three lead zirconate titanate (PZT) patches. To reduce the vast number of patches needed for large-scaled structure, this paper presents an extremely sparse sensor array with only one single PZT patch, which could actuate and sense simultaneously. Firstly, a half-bridge circuit, referred as a self-sensing circuit is developed with a capacitor connected with the PZT patch, and the capacitance parameter and self-sensing performance are studied subsequently. Then, an orthogonal matching pursuit (OMP)-based sparse decomposition and dispersion removal algorithm is proposed to separate and reconstruct wave packets which are acutely overlapped. Subsequently, a matching strategy is proposed to determine the matching relationship between wave packets and wave paths. Finally, the ellipse-type imaging approach is employed to image the defect location. Two cases: one and two defects respectively are implemented to verify its efficacy. Experimental results illustrate that the proposed self-sensing unit and signal process method could erase the adverse effect of sensor-actuator interval and dispersion characteristic to the localization resolution and accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call