Abstract
This work provides a detailed insight into the synthesis of N-(2-hydroxypropyl)methacrylamide (HPMA) polymers employing the activated ester approach. In this approach, polypenta fluorophenyl methacrylate (PFPMA)-activated ester polymers are synthesized by the reversible addition-fragmentation chain transfer (RAFT) polymerization and transferred into HPMA-based systems by the use of 2-hydroxypropylamine. To prove quantitative conversion in the absence of side reactions, special attention is devoted to investigate different reaction conditions by different analytical methods ((1) H, (19) F, inverse-gated (13) C NMR, and zeta potential measurements). Furthermore the influence of common solvent impurities, such as water, is investigated. Besides differences in polymer tacticity, the poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA) synthesized under water-free conditions display the same properties like the conventional synthesized control-PHPMA. However, 3% water content in the dimethylsulfoxide are already sufficient to yield PHPMA polymers with a negative zeta potential of -15.8 mV indication the presence of carboxylic groups due to partial hydrolysis of the activated ester.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.