Abstract
Plastic wastes have been recognized as the most common and durable marine contaminants, which are not only found in the shallow water, but also on the sea floor. However, whether deep-sea microorganisms have evolved the capability of degrading plastic remains elusive. In this study, a deep-sea bacterium Bacillus velezensis GUIA was found to be capable of degrading waterborne polyurethane. Transcriptomic analysis showed that the supplement of waterborne polyurethane upregulated the expression of many genes related to spore germination, indicating that the presence of plastic had effects on the growth of strain GUIA. In addition, the supplement of waterborne polyurethane also evidently upregulated the expressions of many genes encoding lipase, protease, and oxidoreductase. Liquid chromatography-mass spectrometry (LC-MS) results showed that potential enzymes responsible for plastic degradation in strain GUIA were identified as oxidoreductase, protease, and lipase, which was consistent with the transcriptomic analysis. In combination of in vitro expression and degradation assays as well as Fourier transform infrared (FTIR) analysis, we demonstrated that the oxidoreductase Oxr-1 of strain GUIA was the key degradation enzyme toward waterborne polyurethane. Moreover, the oxidoreductase Oxr-1 was also shown to degrade the biodegradable polybutylene adipate terephthalate (PBAT) film indicating its wide application potential. IMPORTANCE The widespread and indiscriminate disposal of plastics inevitably leads to environmental pollution. The secondary pollution by current landfill and incineration methods causes serious damage to the atmosphere, land, and rivers. Therefore, microbial degradation is an ideal way to solve plastic pollution. Recently, the marine environment is becoming a hot spot to screen microorganisms possessing potential plastic degradation capabilities. In this study, a deep-sea Bacillus strain was shown to degrade both waterborne polyurethane and biodegradable PBAT film. The FAD-binding oxidoreductase Oxr-1 was demonstrated to be the key enzyme mediating plastic degradation. Our study not only provided a good candidate for developing bio-products toward plastic degradation but also paved a way to investigate the carbon cycle mediated by plastic degradation in deep-sea microorganisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.