Abstract
Device-to-Device (D2D) caching is becoming prevalent in relieving network congestion. However, there remain challenges in exploring efficient D2D caching strategies due to the diverse user requirements. In this paper, we propose a social-aware D2D caching scheme that integrates the concept of social incentive and recommendation with D2D caching decision-making. Firstly, we investigate federated learning (FL)-based prediction method to achieve the social-aware in a privacy-preserving manner. Then, the predicted social relationship provides prior knowledge for deep reinforcement learning (DRL) to make optimal D2D caching decisions. The optimization problem of this paper is to maximize the data offloading probability, which can be formulated as a Markov decision process. To solve it, we propose a double deep Q-learning network (DDQN)-based D2D caching algorithm. At last, simulation results validate the prediction and convergence performance of the proposed scheme. Besides, the scheme also shows superior caching performance in reducing the average delay and improving overall offloading probability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.