Abstract
Cache-enabled device-to-device (D2D) communication has been widely deemed as a promising approach to tackle the unprecedented growth of wireless traffic demands. Recently, tremendous efforts have been put into designing an efficient caching policy to provide users better quality of service. However, public concerns of data privacy still remain in D2D cache sharing networks, which thus arises an urgent need for a privacy-preserved caching scheme. In this study, we propose a double-layer blockchain-based federated learning (DBFL) scheme with the aim of minimizing the download latency for all users in a privacy-preserving manner. Specifically, in the sublayer, the devices within the same coverage area run a federated learning (FL) to train the caching scheme model for each area separately without exchange of local data. The model parameters for each area are recorded in sublayer chains with Raft consensus mechanism. Meanwhile, in the main layer, a mainchain based on practical Byzantine fault tolerance (PBFT) mechanism is used to resist faults and attacks, thus securing the reliability of FL updates. Only the reliable area models authorized by the mainchain are utilized to update the global model in the main layer. Numerical results show the convergence, as well as the gain of download latency of the proposed DBFL caching scheme when compared with several traditional schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.