Abstract

Digital microfluidic biochips (DMFBs), which are used in various fields like DNA analysis, clinical diagnosis, and PCR testing, have made biochemical experiments more compact, efficient, and user-friendly than the previous methods. However, their reliability is often compromised by their inability to adapt to all kinds of errors. Errors in biochips can be categorized into two types: known errors, and unknown errors. Known errors are detectable before the start of the routing process using sensors or cameras. Unknown errors, in contrast, only become apparent during the routing process and remain undetected by sensors or cameras, which can unexpectedly stop the routing process and diminish the reliability of biochips. This paper introduces a deep reinforcement learning-based routing algorithm, designed to manage not only known errors but also unknown errors. Our experiments demonstrated that our algorithm outperformed the previous ones in terms of the success rate of the routing, in the scenarios including both known errors and unknown errors. Additionally, our algorithm contributed to detecting unknown errors during the routing process, identifying the most efficient routing path with a high probability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.