Abstract
Abstract High-precision water quality prediction plays a vital role in preventing and controlling river pollution. However, river water's highly nonlinear and complex spatio-temporal dependencies pose significant challenges to water quality prediction tasks. In order to capture the spatial and temporal characteristics of water quality data simultaneously, this paper combines deep learning algorithms for river water quality prediction in the river network area of Jiangnan Plain, China. A water quality prediction method based on graph convolutional network (GCN) and long short-term memory neural network (LSTM), namely spatio-temporal graph convolutional network model (ST-GCN), is proposed. Specifically, the spatio-temporal graph is constructed based on the spatio-temporal correlation between river stations, the spatial features in the river network are extracted using GCN, and the temporal correlation of water quality data is obtained by integrating LSTM. The model was evaluated using R2, MAE, and RMSE, and the experimental results were 0.977, 0.238, and 0.291, respectively. Compared with traditional water quality prediction models, the ST-GCN model has significantly improved prediction accuracy, better stability, and generalization ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.