Abstract
AbstractA deep‐learning neural network (DLNN) model was developed to predict thunderstorm occurrence within 400 km2 South Texas domains for up to 15 hr (±2 hr accuracy) in advance. The input features were chosen primarily from numerical weather prediction model output parameters/variables; cloud‐to‐ground lightning served as the target. The deep‐learning technique used was the stacked denoising autoencoder (SDAE) in order to create a higher order representation of the features. Logistic regression was then applied to the SDAE output to train the predictive model. An iterative technique was used to determine the optimal SDAE architecture. The performance of the optimized DLNN classifiers exceeded that of the corresponding shallow neural network models, a classifier via a combination of principal component analysis and logistic regression, and operational weather forecasters, based on the same data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.