Abstract
Deep learning techniques have been widely used in everything from analyzing medical information to tools for making medical diagnoses. One of the most feared diseases in modern medicine is a brain tumor. MRI is a radiological method that can be used to identify brain tumors. However, manual segmentation and analysis of MRI images is time-consuming and can only be performed by a professional neuroradiologist. Therefore automatic recognition is required. This study propose a deep learning method based on a hybrid multi-layer perceptron model with Inception-v3 to predict brain tumors using MRI images. The research was conducted by building the Inception-v3 and multilayer perceptron model, and comparing it with the proposed model. The results showed that the hybrid multilayer perceptron model with inception-v3 achieved accuracy, recall, precision, and fi-score of 92%. While the inception-v3 and multilayer perceptron models only obtained 66% and 56% accuracy, respectively. This research shows that the proposed model successfully predicts brain tumors and improves performance
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have