Abstract

With the increasing impact of climate change and relative sea level rise, low-lying coastal communities face growing risks from recurrent nuisance flooding and storm tides. Thus, timely and reliable predictions of coastal water levels are critical to resilience in vulnerable coastal areas. Over the past decade, there has been increasing interest in utilizing machine learning (ML) based models for emulation and prediction of coastal water levels. However, flood advisory systems still rely on running computationally demanding hydrodynamic models. To alleviate the computational burden, these physics-based models are either run at small scales with high resolution or at large scales with low resolution. While ML-based models are very fast, they face challenges in terms of ensuring reliability and ability to capture any surge levels. In this paper, we develop a deep neural network for spatiotemporal prediction of water levels in coastal areas of the Chesapeake Bay in the U.S. Our model relies on data from numerical weather prediction models as the atmospheric input and astronomical tide levels, while its outputs are time series of predicted water levels at several tide gauge locations across the Chesapeake Bay. We utilized a CNN-LSTM setting as the architecture of the model. The CNN part extracts the features from a sequence of gridded wind fields and fuses its output to several independent LSTM units. The LSTM units concatenate the atmospheric features with respective astronomical tide levels and produce water level time series. The novel contribution of the present work is in spatiotemporality and in prioritization of the physical relationships in the model to maintain a high analogy to hydrodynamic modeling, either in the network architecture or in the selection of predictors and predictands. The results show that this setting yields a strong performance in predicting coastal water levels that cause flooding from minor to major levels. We also show that the model stands up successfully to the rigorous comparison with a high-fidelity ADCIRC model, yielding mean RMSE and correlation coefficient of 14.3 cm and 0.94, respectively, in two extreme cases, versus 12.30 cm and 0.96 for the ADCIRC model. The results highlight the practical feasibility of employing fast yet inexpensive data-driven models for resilient coastal management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call