Abstract
Accurate water levels modeling and prediction is essential for safety of coastal navigation and other maritime applications. Water levels modeling and prediction is traditionally developed using the least-squares-based harmonic analysis method that estimates the harmonic constituents from the measured water levels. If long water level measurements are not obtained from the tide gauge, accurate water levels prediction cannot be estimated. To overcome the above limitations, the current state-of-the-art artificial neural network has recently been developed for water levels prediction from short water level measurements. However, a highly nonlinear and efficient wavelet network model is proposed and developed in this paper for water levels modeling and prediction using short water level measurements. Water level measurements (about one month and a week) from six different tide gauges are employed to develop the proposed model and investigate the atmospheric changes effect. It is shown that the majority of error values, the differences between water level measurements and the modeled and predicted values, fall within the −5cm and +5cm range and root-mean-squared (RMS) errors fall within 1–6cm range. A comparison between the developed highly nonlinear wavelet network model and the harmonic analysis method and the artificial neural networks shows that the RMS of the developed wavelet network model when compared with the RMS of the harmonic analysis method is reduced by about 70% and when compared with the RMS of the artificial neural networks is reduced by about 22%. It is also worth noting that if the atmospheric changes effect (meteorological effect) of the air pressure, the air temperature, the relative humidity, wind speed and wind direction are considered, the performance accuracy of the developed wavelet network model is improved by about 20% (based on the estimated RMS values).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.