Abstract
Early fault detection and fault prognosis are crucial functions to ensure safe process operations. Fault prognosis can detect and isolate early developing faults as well as predict fault propagation. To promptly detect potential faults in process systems, it is important to examine the fault symptoms as early as possible. In recent years, fault prognosis approaches have led to the remaining useful life prediction. Therefore, in a process system, advancing prognosis approaches will be beneficial for early fault detection in terms of process safety, and to predict the remaining useful life, targeting the system's reliability. In data-driven models, early fault detection is regarded as a time-dependent sequence learning problem; the future data sequence is predicted using the previous data pattern. Studying recent years' research shows that a recurrent neural network (RNN) can solve the sequence learning problem. This paper proposes an early potential fault detection approach by examining the fault symptoms in multivariate complex process systems. The proposed model has been developed using the Convolutional Neural Network (CNN)- Long Short-Term Memory (LSTM) approach to forecast the system parameters for future sampling windows' recognition and an unsupervised One-class-SVM used for fault symptoms' detection using forecasted data window. The performance of the proposed method is assessed using Tennessee Eastman process time-series data. The results confirm that the proposed method effectively detects potential fault conditions in multivariate dynamic systems by detecting the fault symptoms early as possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.