Abstract
Optimal sedation assessment in critically ill children remains challenging due to the subjective nature of behavioral scales and intermittent evaluation schedules. This study aimed to develop a deep learning model based on heart rate variability (HRV) parameters and vital signs to predict effective and safe sedation levels in pediatric patients. This retrospective cross-sectional study was conducted in a pediatric intensive care unit at a tertiary children's hospital. We developed deep learning models incorporating HRV parameters extracted from electrocardiogram waveforms and vital signs to predict Richmond Agitation-Sedation Scale (RASS) scores. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). The data were split into training, validation, and test sets (6:2:2), and the models were developed using a 1D ResNet architecture. Analysis of 4,193 feature sets from 324 patients achieved excellent discrimination ability, with AUROC values of 0.867, 0.868, 0.858, 0.851, and 0.811 for whole number RASS thresholds of -5 to -1, respectively. AUPRC values ranged from 0.928 to 0.623, showing superior performance in deeper sedation levels. The HRV metric SDANN2 showed the highest feature importance, followed by systolic blood pressure and heart rate. A combination of HRV parameters and vital signs can effectively predict sedation levels in pediatric patients, offering the potential for automated and continuous sedation monitoring in pediatric intensive care settings. Future multi-center validation studies are needed to establish broader applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.