Abstract

With the prevalence of social network service in cyber-Physical space, flow of various fake news has been a rough issue for operators of social service. Although many theoretical outcomes have been produced in recent years, they are generally challenged by processing speed of semantic modeling. To solve this issue, this paper presents a deep learning-based fast fake news detection model for cyber-physical social services. Taking Chinese text as the objective, each character in Chinese text is directly adopted as the basic processing unit. Considering the fact that the news are generally short texts and can be remarkably featured by some keywords, convolution-based neural computing framework is adopted to extract feature representation for news texts. Such design is able to ensure both processing speed and detection ability in scenes of Chinese short texts. At last, some experiments are conducted for evaluation on a real-world dataset collected from a Chinese social media. The results show that the proposal possesses lower training time cost as well as higher classification accuracy compared with baseline methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.