Abstract
Alcoholism is a serious disorder that poses a problem for our society. Detection of alcoholism has no widely accepted standard tests or procedures. An electroencephalogram (EEG) is a method to measure the brain’s electrical activity and can be used to detect alcoholism. These EEG signals are complex and multichannel and hence can be hard to interpret manually. Several previous works have tried to classify a subject as alcoholic or non-alcoholic based on these EEG signals. These works have mostly used machine learning or statistical techniques, along with handcrafted features. Not much work is done on the application of deep learning models for the detection of alcoholism using EEG signals. This paper proposes a novel deep learning architecture that uses a combination of Fast Fourier Transform (FFT), Convolution Neural Network (CNN), Long Short Term Memory (LSTM), and recently proposed Attention mechanism for extracting Spatio-temporal features from multichannel EEG signals. This proposed architecture can classify a subject as alcoholic or control with high accuracy by analyzing EEG signals based on Spatio-temporal features and can be used for automating the task of alcoholism detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.