Abstract

Accurately predicting the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is vital for improving battery performance and safety in applications such as consumer electronics and electric vehicles. While the prediction of RUL for these batteries is a well-established field, the current research refines RUL prediction methodologies by leveraging deep learning techniques, advancing prediction accuracy. This study proposes AccuCell Prodigy, a deep learning model that integrates auto-encoders and long short-term memory (LSTM) layers to enhance RUL prediction accuracy and efficiency. The model’s name reflects its precision (“AccuCell”) and predictive strength (“Prodigy”). The proposed methodology involves preparing a dataset of battery operational features, split using an 80–20 ratio for training and testing. Leveraging 22 variations of current (critical parameter) across three Li-ion cells, AccuCell Prodigy significantly reduces prediction errors, achieving a mean square error of 0.1305%, mean absolute error of 2.484%, and root mean square error of 3.613%, with a high R-squared value of 0.9849. These results highlight its robustness and potential for advancing battery health management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.