Abstract

Wafer maps contain information about various defect patterns on the wafer surface and automatic classification of these defects plays a vital role to find their root causes. Semiconductor engineers apply various methods for wafer defect classification such as manual visual inspection or machine learning-based algorithms by manually extracting useful features. However, these methods are unreliable, and their classification performance is also poor. Therefore, this paper proposes a deep learning-based convolutional neural network for automatic wafer defect identification (CNN-WDI). We applied a data augmentation technique to overcome the class-imbalance issue. The proposed model uses convolution layers to extract valuable features instead of manual feature extraction. Moreover, state-of-the-art regularization methods such as batch normalization and spatial dropout are used to improve the classification performance of the CNN-WDI model. The experimental results comparison using a real wafer dataset shows that our model outperformed all previously proposed machine learning-based wafer defect classification models. The average classification accuracy of the CNN-WDI model with nine different wafer map defects is 96.2%, which is an increment of 6.4% from the last highest average accuracy using the same dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call