Abstract
To evaluate primary and secondary pathologies of interest using an artificial intelligence (AI) platform, AI-Rad Companion, on low-dose computed tomography (CT) series from integrated positron-emission tomography (PET)/CT to detect CT findings that might be overlooked. One hundred and eighty-nine sequential patients who had undergone PET/CT were included. Images were evaluated using an ensemble of convolutional neural networks (AI-Rad Companion, Siemens Healthineers, Erlangen, Germany). The primary outcome was detection of pulmonary nodules for which the accuracy, identity, and intra-rater reliability was calculated. For secondary outcomes (binary detection of coronary artery calcium, aortic ectasia, vertebral height loss), accuracy and diagnostic performance were calculated. The overall per-nodule accuracy for detection of lung nodules was 0.847. The overall sensitivity and specificity for detection of lung nodules was 0.915 and 0.781. The overall per-patient accuracy for AI detection of coronary artery calcium, aortic ectasia, and vertebral height loss was 0.979, 0.966, and 0.840, respectively. The sensitivity and specificity for coronary artery calcium was 0.989 and 0.969. The sensitivity and specificity for aortic ectasia was 0.806 and 1. The neural network ensemble accurately assessed the number of pulmonary nodules and presence of coronary artery calcium and aortic ectasia on low-dose CT series of PET/CT. The neural network was highly specific for the diagnosis of vertebral height loss, but not sensitive. The use of the AI ensemble can help radiologists and nuclear medicine physicians to catch CT findings that might be overlooked.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have