Abstract
In complex systems, the operating units often suffer from multiple failure modes, and each failure mode results in distinct degradation path and service life. Thus, it is critical to perform the failure mode diagnostics and predict the remaining useful life (RUL) accordingly in modern industrial systems. However, most of the existing approaches consider the prognostic problem under a single failure mode, or treat the failure mode classification and RUL prediction as two independent tasks, despite the fact that they are closely related and should be synergistically performed to enhance the generalization performance. Motivated by these issues, we propose a deep branched network (DBNet) for failure mode classification and RUL prediction. In this approach, the two tasks are jointly learned in a sequential manner, wherein the feature extraction layers are shared by both tasks, while the neural network branches into individualized subnetworks for RUL prediction of each mode based on the output of the diagnostic subnetwork. Different from the traditional multi-task learning-based methods, where the diagnostics and RUL prediction are performed in parallel, the proposed DBNet innovatively couples these two tasks sequentially to boost the prognostic accuracy. The effectiveness of the proposed method is thoroughly demonstrated and evaluated on an aircraft gas turbine engine with multiple failure modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.