Abstract

Smart grid technology increases reliability, security, and efficiency of the electrical grids. However, its strong dependencies on digital communication technology bring up new vulnerabilities that need to be considered for efficient and reliable power distribution. In this paper, an unsupervised anomaly detection based on statistical correlation between measurements is proposed. The goal is to design a scalable anomaly detection engine suitable for large-scale smart grids, which can differentiate an actual fault from a disturbance and an intelligent cyber-attack. The proposed method applies feature extraction utilizing symbolic dynamic filtering (SDF) to reduce computational burden while discovering causal interactions between the subsystems. The simulation results on IEEE 39, 118, and 2848 bus systems verify the performance of the proposed method under different operation conditions. The results show an accuracy of 99%, true positive rate of 98%, and false positive rate of less than 2%

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.