Abstract

BackgroundThe role of 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) in children is still expanding. Dedicated paediatric dosage regimens are needed to keep the radiation dose as low as reasonably achievable and reduce the risk of radiation-induced carcinogenesis. The aim of this study is to investigate the relation between patient-dependent parameters and [18F]FDG PET image quality in order to propose a dedicated paediatric dose regimen.MethodsIn this retrospective analysis, 102 children and 85 adults were included that underwent a diagnostic [18F]FDG PET/CT scan. The image quality of the PET scans was measured by the signal-to-noise ratio (SNR) in the liver. The SNR liver was normalized (SNRnorm) for administered activity and acquisition time to apply curve fitting with body weight, body length, body mass index, body weight/body length and body surface area. Curve fitting was performed with two power fits, a nonlinear two-parameter model α p−d and a linear single-parameter model α p−0.5. The fit parameters of the preferred model were combined with a user preferred SNR to obtain at least moderate or good image quality for the dosage regimen proposal.ResultsBody weight demonstrated the highest coefficient of determination for the nonlinear (R2 = 0.81) and linear (R2 = 0.80) models. The nonlinear model was preferred by the Akaike’s corrected information criterion. We decided to use a SNR of 6.5, based on the expert opinion of three nuclear medicine physicians. Comparison with the quadratic adult protocol confirmed the need for different dosage regimens for both patient groups. In this study, the amount of administered activity can be considerably reduced in comparison with the current paediatric guidelines.ConclusionBody weight has the strongest relation with [18F]FDG PET image quality in children. The proposed nonlinear dosage regimen based on body mass will provide a constant and clinical sufficient image quality with a significant reduction of the effective dose compared to the current guidelines. A dedicated paediatric dosage regimen is necessary, as a universal dosing regimen for paediatric and adult is not feasible.

Highlights

  • The role of 2-[18F]fluoro-2-deoxy-D-glucose ­([18F]FDG) positron emission tomography/computed tomography (PET/CT) in children is still expanding

  • The optimized adult guidelines recommend a quadratic dosage regimen based on body mass to obtain sufficient constant image quality, which was reported by a study of de Groot et al [15] using signal-to-noise ratio as a surrogate for image quality

  • Liver deoxyglucose metabolism An unpaired t-test was performed to compare the liver deoxyglucose metabolism between children and adults. This showed that SUVmean normalized by body surface area (SUVbsa) in children (0.57 ± 0.10) was significant lower (t (185) = 7.82, p < 0.001) compared with SUVbsa in adults (0.69 ± 0.10) with a mean difference of 0.11 (95%CI, 0.09 to 0.14)

Read more

Summary

Introduction

The role of 2-[18F]fluoro-2-deoxy-D-glucose ­([18F]FDG) positron emission tomography/computed tomography (PET/CT) in children is still expanding. For performing paediatric nuclear medicine procedures, both the Society of Nuclear Medicine and Molecular Imaging (SNMMI) and European Association of Nuclear Medicine (EANM) recommend the EANM paediatric dosage card (version 5.7.2016) [6, 7] or the 2016 North American Consensus guidelines (NACG) [7, 8] Both these guidelines have, several shortcomings as they are derived from adult-based protocols [9,10,11,12], and both focus on radiation dose without taking image quality into account [9,10,11,12,13]. Optimizing image quality in these patients was investigated by several studies [16,17,18,19,20]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call