Abstract
We develop a linear, first-order, decoupled, energy-stable scheme for a binary hydrodynamic phase field model of mixtures of nematic liquid crystals and viscous fluids that satisfies an energy dissipation law. We show that the semi-discrete scheme in time satisfies an analogous, semi-discrete energy-dissipation law for any time-step and is therefore unconditionally stable. We then discretize the spatial operators in the scheme by a finite-difference method and implement the fully discrete scheme in a simplified version using CUDA on GPUs in 3 dimensions in space and time. Two numerical examples for rupture of nematic liquid crystal filaments immersed in a viscous fluid matrix are given, illustrating the effectiveness of this new scheme in resolving complex interfacial phenomena in free surface flows of nematic liquid crystals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.