Abstract

We derive a new phase field theory for immiscible mixtures of nematic liquid crystals and viscous fluids using the variational principle coupled with the generalized Onsager principle. A novel phase transition mechanism is implemented to couple the nematic liquid crystal phase with the viscous fluid phase to arrive at the dissipative hydrodynamic model for incompressible fluid mixtures. Through a delicate explicit–implicit numerical discretization, we develop a decoupled, linear scheme for a simplified version of the phase field model, as well as a coupled, nonlinear scheme for the full model. Both schemes are shown as unconditionally energy stable with consistent, discrete dissipative energy laws. Several numerical examples are presented to show the effectiveness of the new model and the new numerical schemes developed for it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.