Abstract

BackgroundChoosing the correct ventilator settings for the treatment of patients with respiratory tract disease is quite an important issue. Since the task of specifying the parameters of ventilation equipment is entirely carried out by a physician, physician’s knowledge and experience in the selection of these settings has a direct effect on the accuracy of his/her decisions. Nowadays, decision support systems have been used for these kinds of operations to eliminate errors. Our goal is to minimize errors in ventilation therapy and prevent deaths caused by incorrect configuration of ventilation devices. The proposed system is designed to assist less experienced physicians working in the facilities without having lung mechanics like cottage hospitals.MethodsThis article describes a decision support system proposing the ventilator settings required to be applied in the treatment according to the patients’ physiological information. The proposed model has been designed to minimize the possibility of making a mistake and to encourage more efficient use of time in support of the decision making process while the physicians make critical decisions about the patient. Artificial Neural Network (ANN) is implemented in order to calculate frequency, tidal volume, FiO2 outputs, and this classification model has been used for estimation of pressure support / volume support outputs. For the obtainment of the highest performance in both models, different configurations have been tried. Various tests have been realized for training methods, and a number of hidden layers mostly affect factors regarding the performance of ANNs.ResultsThe physiological information of 158 respiratory patients over the age of 60 and were treated in three different hospitals between the years 2010 and 2012 has been used in the training and testing of the system. The diagnosed disease, core body temperature, pulse, arterial systolic pressure, diastolic blood pressure, PEEP, PSO2, pH, pCO2, bicarbonate data as well as the frequency, tidal volume, FiO2, and pressure support / volume support values suitable for use in the ventilator device have been recommended to the physicians with an accuracy of 98,44%. Performed experiments show that sequential order weight/bias training was found to be the most ideal ANN learning algorithm for regression model and Bayesian regulation backpropagation was found to be the most ideal ANN learning algorithm for classification models.ConclusionsThis article aims at making independent of the choice of parameters from physicians in the ventilator treatment of respiratory tract patients with proposed decision support system. The rate of accuracy in prediction of systems increases with the use of data of more patients in training. Therefore, non-physician operators can use systems in determination of ventilator settings in case of emergencies.

Highlights

  • Choosing the correct ventilator settings for the treatment of patients with respiratory tract disease is quite an important issue

  • This study describes a decision support system designed to automatically determine the ventilator settings in consideration of the ventilation data obtained from two different hospitals

  • Prior to the second step of the system which is the estimation of the ventilator settings, the probabilities of the diseases were predicted and presented to the physician, and upon the verification of relevant disease or determination of a new disease by the physician, they were sent as parameters for the predicted model of ventilator settings

Read more

Summary

Introduction

Choosing the correct ventilator settings for the treatment of patients with respiratory tract disease is quite an important issue. The use of decision support systems [1] in health provides improvement in terms of the quality of health and care, early diagnosis of diseases, prevention of person related errors, lowering costs and providing the patients with the optimum treatment. Most physicians prefer the decision support systems in the interest of the effective operation and early determination of the most appropriate option in order to avoid the growing problem related to the management of medical information. The decision support systems are the most ideal aids in either detection or treatment of a disease, or determination of the most appropriate drug. The device that is used in this process is called as the ventilator device [3] and the process is called ventilation

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.