Abstract
A hybrid power compensator (HPC) consisting of a static VAr compensator and a dynamic compensator needs to be optimally controlled during the compensation of nonlinear loads. The HPC must be controlled to meet minimum requirements in terms of power factor and harmonic distortion, while at the same time minimizing its total cost. An artificial neural network (ANN) is used to control the HPC amidst a very dynamic power system environment. The performance of a reference ANN is evaluated while controlling an HPC connected to a typical nonlinear industrial load. The training and performance of the ANN is then optimized in terms of training set size, training set packing and ANN topology and the performance compared to the reference ANN. This paper highlights the importance of optimising the mentioned ANN parameters to achieve optimum ANN training and modeling accuracy. The results obtained reveals that the application of an ANN in controlling an HPC is feasible given that the ANN parameters are chosen appropriately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.