Abstract

The cooperative decision-making of swarm agents has attracted extensive attention from researchers due to its potential applications in multidisciplinary engineering problems. This paper studies a confrontation problem called asymmetric attack-defense confrontation (i.e., considering the difference in capability and quantity between agents and targets). The objective is to develop an effective self-organized swarm confrontation decision-making method. The decision-making process consists of task allocation decision and swarm motion decision. At each decision-making step, firstly, each agent forms a coalition with other agents autonomously by using a proposed hedonic coalition formation algorithm according to the attribute of targets. Thus, the agents assigned to the same target form a coalition, and swarm agents form several disjoint coalitions. Then, based on the allocated results, the agents are steered toward the corresponding target by a combat stimulus and a proposed selected interaction swarm algorithm. Finally, while the targets are within the agents’ attack radius, the agents execute the confrontation decision. Simulation results show the effectiveness of the designed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call