Abstract

The cooperative decision-making of swarm agents has attracted extensive attention from researchers due to its potential applications in multidisciplinary engineering problems. This paper studies a confrontation problem called asymmetric attack-defense confrontation (i.e., considering the difference in capability and quantity between agents and targets). The objective is to develop an effective self-organized swarm confrontation decision-making method. The decision-making process consists of task allocation decision and swarm motion decision. At each decision-making step, firstly, each agent forms a coalition with other agents autonomously by using a proposed hedonic coalition formation algorithm according to the attribute of targets. Thus, the agents assigned to the same target form a coalition, and swarm agents form several disjoint coalitions. Then, based on the allocated results, the agents are steered toward the corresponding target by a combat stimulus and a proposed selected interaction swarm algorithm. Finally, while the targets are within the agents’ attack radius, the agents execute the confrontation decision. Simulation results show the effectiveness of the designed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.