Abstract
The miniaturization of microrobots is accompanied by limitations of signaling, sensing and agility. Control of a swarm of simple microrobots has to cope with such constraints in a way which still guarantees the accomplishment of a task. A recently proposed communication method, which is based on the coupling of signal oscillators of individual agents [13], may provide a basis for a distributed control of a simulated swarm of simple microrobots (similar to I-Swarm microrobots) engaged in a cleaning scenario. This self-organized communication method was biologically inspired from males of chorusing insects which are known for the rapid synchronization of their acoustic signals in a chorus. Signal oscillator properties were used to generate waves of synchronized signaling (s-waves) among a swarm of agents. In a simulation of a cleaning scenario, agents on the dump initiated concentrically spreading s-waves by shortening their intrinsic signal period. Dirt-carrying agents localized the dump by heading against the wave front. After optimization of certain control parameters the properties of this distributed control strategy were investigated in different variants of a cleaning scenario. These include a second dump, obstacles, different agent densities, agent drop-out and a second signal oscillator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.