Abstract

Since the communication channels in vehicular ad-hoc networks (VANETs) are wireless and open, malicious adversaries can monitor or fabricate messages transmitted across them. To secure vehicular communications, an authenticated key agreement (AKA) scheme needs to be designed for VNAETs. Traditional VANETs AKA schemes require the trusted authority (TA) to authenticate the legality of message and corresponding sender. However, the TA in these schemes is vulnerable to suffer from single-point-of-failure issues. Some blockchain-based VANETs AKA schemes have been proposed recently to address the deficiency. However, these schemes rely on the consortium or private blockchain in which TAs are still required for key generation, resulting that the practicality is limited. To solve the issue, we design a smart contract-based VANETs AKA scheme, where the AKA algorithm of our proposed scheme is implemented on smart contract deployed on a public blockchain system and the TA that is responsible for key generation will not be required. The security proof and analysis show that our proposed scheme satisfies the session-key semantic security and essential security and privacy requirements, respectively. The performance analysis demonstrates that our proposed scheme outperforms existing blockchain-based VANETs AKA schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.