Abstract
We study, using Mean Curvature Flow methods, 3+1 dimensional cosmologies with a positive cosmological constant, matter satisfying the dominant and the strong energy conditions, and with spatial slices that can be foliated by 2-dimensional surfaces that are the closed orbits of a symmetry group. If these surfaces have non-positive Euler characteristic (or in the case of 2-spheres, if the initial 2-spheres are large enough) and also if the initial spatial slice is expanding everywhere, then we prove that asymptotically the spacetime becomes physically indistinguishable from de Sitter space on arbitrarily large regions of spacetime. This holds true notwithstanding the presence of initial arbitrarily-large density fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.