Abstract

We study, using Mean Curvature Flow methods, 2+1 dimensional cosmologies with a positive cosmological constant and matter satisfying the dominant and the strong energy conditions. If the spatial slices are compact with non-positive Euler characteristic and are initially expanding everywhere, then we prove that the spatial slices reach infinite volume, asymptotically converge on average to de Sitter and they become, almost everywhere, physically indistinguishable from de Sitter. This holds true notwithstanding the presence of initial arbitrarily-large density fluctuations and the formation of black holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call