Abstract

De novo proteins constructed from novel amino acid sequences are distinct from proteins that evolved in nature. Construct K (ConK) is a binary-patterned de novo designed protein that rescues Escherichia coli from otherwise toxic concentrations of copper. ConK was recently found to bind the cofactor PLP (pyridoxal phosphate, the active form of vitamin B6). Here, we show that ConK catalyzes the desulfurization of cysteine to H2S, which can be used to synthesize CdS nanocrystals in solution. The CdS nanocrystals are approximately 3nm, as measured by transmission electron microscope, with optical properties similar to those seen in chemically synthesized quantum dots. The CdS nanocrystals synthesized using ConK have slower growth rates and a different growth mechanism than those synthesized using natural biomineralization pathways. The slower growth rate yields CdS nanocrystals with two desirable properties not observed during biomineralization using natural proteins. First, CdS nanocrystals are predominantly of the zinc blende crystal phase; this is in stark contrast to natural biomineralization routes that produce a mixture of zinc blende and wurtzite phase CdS. Second, in contrast to the growth and eventual precipitation observed in natural biomineralization systems, the CdS nanocrystals produced by ConK stabilize at a final size. Future optimization of CdS nanocrystal growth using ConK-or other de novo proteins-may help to overcome the limits on nanocrystal quality typically observed from natural biomineralization by enabling the synthesis of more stable, high-quality quantum dots at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.