Abstract

The development of green synthetic approaches is one of the key materials challenges in moving toward semiconductor quantum dots (QDs) for large-scale production and commercial applications. This article presents a comprehensive overview on the synthesis of colloidal QDs prepared via chemical approaches in solution phase, with emphasis on green routes which possess the advantages of environment-friendly raw materials, simple operation process, and robust mass-scale production. The approaches for the synthesis of QDs in batch reactors are summarized, including hot-injection organometallic synthesis, noninjection organometallic synthesis, aqueous synthesis and biosynthesis approaches, with some of the concerns on their limitations for scale-up, followed by some continuous synthetic methods aiming for reproducible and large-scale production. Current advances in continuous synthesis of QDs by microfluidic devices, high-gravity reactors, and spray-based techniques are briefly introduced. We also provide some i...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.