Abstract
In this paper, we consider a class of bilevel programming problems where the upper objective function is convex quadratic while the lower objective function and the constraints are linear. The problem is first rewritten as minimizing a convex quadratic function subject to linear constraints and one concave constraint. Then, we use an exact penalty technique to reformulate the problem as a DC program. Afterward, DCA, an efficient algorithm in nonconvex programming, is developed to solve the resulting problem.     For globally solving the problem, we combine DCA with a Branch and Bound algorithm (BB-DCA). DCA is applied to compute upper bounds, while lower bounds are calculated via a DC relaxation of the DC constraint. The proposed algorithms, DCA and BB-DCA, are compared with the Branch-and-Bound algorithm without DCA (BB) on random data. The numerical results show that the proposed algorithms are efficient.     Finally, we consider an application of portfolio selection problems with the historical data related to the prices in the market of France, Luxembourg, United States and England during the period 2000-2007. The experimental results confirm the efficiency and the rapidity of DCA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.