Abstract
In this paper, we consider the case of downside risk measures with cardinality and bounding constraints in portfolio selection. These constraints limit the amount of capital to be invested in each asset as well as the number of assets composing the portfolio. While the standard Markowitz’s model is a convex quadratic program, this new model is a NP-hard mixed integer quadratic program. Realizing the computational intractability for this class of problems, especially large-scale problems, we first reformulate it as a DC program with the help of exact penalty techniques in Difference of Convex functions (DC) programming and then solve it by DC Algorithms (DCA). To check globality of computed solutions, a global method combining the local algorithm DCA with a Branch-and-Bound algorithm is investigated. Numerical simulations show that DCA is an efficient and promising approach for the considered problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.