Abstract

Polymeric syntactic foams are used in aerospace and marine applications requiring low density and low moisture absorption together with high specific strength and stiffness. Their mechanical response is highly sensitive to temperature and strain rate and such sensitivity must be modelled accurately. In this study, the uniaxial compressive response of a polymeric syntactic foam is measured at strain rates in the range [10−3, 2.5·103] /s and temperatures varying between −25°C and 100°C. The resulting dataset is used to train a neural network to predict the compressive response of the foam at arbitrary strain rates and temperatures. It is found that the surrogate model is highly effective in predicting the material response at temperature and rates not included in its training set. Finally, a stochastic version of the data-driven model to allow predictions of the variability in the stress versus strain response is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.