Abstract

ABSTRACTIn this article, we discuss clustering of hybrid-polarimetric SAR images using finite mixture model framework. We use, particularly, Gaussian mixture model to fit the distribution of data. As features of clustering technique, we use three decomposition techniques of hybrid-polarimetric synthetic aperture radar (SAR) data, namely, , , and decompositions. The three pseudo-power components that are derived from these decompositions are clustered using data-driven multivariate Gaussian modelling. These clustered images would give an idea of land use in terms of three broad classes, viz., surface, volume, and dihedral, which are defined with reference to SAR scattering characteristics. We show the efficiency of this technique by successfully clustering the data where dominant scatter-based clustering could not properly distinguish the scattering phenomenon. We also discuss an incremental directional smoothing for speckle suppression of polarimetric SAR images. For experiments, we use hybrid-polarimetric C-band SAR data from Indian Space Research Organisation’s Radar Imaging Satellite (RISAT-1). We also show the results on a simulated hybrid-polarimetric SAR image from Advanced Land Observing Satellite’s (ALOS-1) full-polarimetric SAR data. From our experiments, it is seen that the proposed technique performs consistently and satisfactorily in clustering hybrid-polarimetric SAR data on different decomposition techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.