Abstract

This study presents a methodology to improve the usability and efficiency of infrared thermography (IRT) for subsurface damage detection in concrete structures. A practical and more objective approach to obtain a threshold for IRT data processing was developed by incorporating finite element (FE) model simulations. Regarding the temperature thresholds of sound and delaminated areas, the temperature of the sound part was obtained from the IR image, and the temperature of the delaminated area was defined by FE model simulation. With this methodology, delaminated areas of concrete slabs at 1.27cm and 2.54cm depths could be detected more objectively than by visually judging the color contrast of IR images. However, it was also found that the boundary condition affects the accuracy of the method, and the effect varies depending on the data collection time. On the other hand, it can be assumed that the influential area of the boundary condition is much smaller than the area of a bridge deck in real structures; thus, it might be ignorable on real concrete bridge decks. Even though there are some limitations, this methodology performed successfully paving the way towards automated IRT data analysis for concrete bridge deck inspections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.