Abstract

Proactive traffic management is increasingly critical in maritime intelligent transportation systems. Central to this is maritime traffic forecasting, which leverages specific structures and properties of the problem. This study focuses on the traffic dynamics within convergent areas of inland waterways and proposes a method based on data mining followed by prediction using Automatic Identification System (AIS) data. This approach addresses uncertainties in ship voyage destinations and optimizes predictions for temporary stops in inland waterways. AIS data is processed to depict complete ship motion trajectories, grouping them into trajectory sets based on shared origin, destination, and route. These groups help represent maritime traffic patterns using the entrance and exit points of channels and the boundaries of the study area. Additionally, a stop detection model is applied to these trajectories to identify nodes within maritime traffic networks. A decision tree algorithm is then employed to train a classifier for predicting traffic patterns. The method was validated in the convergent area of the Yangtze River and the Hanjiang River, demonstrating effective pattern extraction from inland maritime traffic and high accuracy in predicting single ship trajectories, achieving a 96.7% accuracy rate and 80.9% precision. The findings suggest that the proposed method (1) effectively extracts and predicts traffic patterns, (2) identifies congestion in convergent waters, and (3) supports traffic management strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.