Abstract
AbstractThis paper presents a prediction‐based algorithm designed to address out‐of‐step (OOS) conditions in power systems. The algorithm utilizes generator data obtained from phasor measurement units. The transient stability of a multi‐machine power system is evaluated using the equal‐area criterion (EAC). The proposed algorithm calculates the characteristics of the P‐δ curves within the EAC framework after a large disturbance. The critical P‐δ trace is determined by analysing the cumulative energy in the acceleration area following fault clearance. The stability margin of the rotor angle is then computed based on the actual active power and its relationship with the critical curve. The algorithm predicts the occurrence of OOS by comparing the measured active power with the corresponding value on the critical curve. Furthermore, a complementary strategy is proposed to predict the OOS condition in integrated inverter‐based power systems. The effectiveness of the proposed algorithm is validated through simulations conducted on the 73‐bus IEEE test power system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.