Abstract

In order to evaluate suitability of battery electric vehicles (BEVs) and hydrogen fuel cell vehicles (HFCVs) in freight transport systems, this paper proposes a data-driven and simulation-based multi-objective optimization method to deploy charging/refueling facilities for BEVs/HFCVs. The model considers three objectives, namely minimizing total system cost, maximizing service reliability, and minimizing greenhouse gas (GHG) emissions. In particular, a data-driven micro-simulation approach is developed to simulate the operation of freight transport systems with different vehicle and facility types based on the analysis of a one-week Global Positioning System (GPS) trajectory dataset containing 63,000 freight vehicles in Beijing. With the model, we compare the suitability of BEVs and HFCVs within three typical scenarios, i.e., BEVs coupled with Charging Stations (BEV-CS), BEVs coupled with Battery Swap Stations (BEV-BSS), and HFCVs coupled with Hydrogen Refueling Stations (HFCV-HRS). The results suggest that BEV-CS has the lowest total system cost: its system cost is 62.5% and 90.3% of the costs in BEV-BSS and HFCV-HRS, respectively. BEV-BSS has the lowest delay time: its delay time is 62.1% and 86.0% of the delay times in BEV-CS and HFCV-HRS, respectively. HFCV-HRS has the lowest GHG emissions: its emissions are 37.3% and 46.9% of the emissions in BEV-CS and BEV-BSS, respectively. The results are expected to be helpful for policy making and infrastructure planning in promoting the development of alternative fuel vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call