Abstract
Emerging variable-stiffness ankle prostheses can modulate their stiffness to meet differing biomechanical demands. To this end, knowledge of the optimal ankle stiffness is required for each user and activity. One approach is to match the stiffness of prosthesis to the user’s preference, but this requires a tuning process to determine each user’s preferences. In this work, we seek to estimate user-preferred ankle stiffness using biomechanical data collected from seven subjects during walking at stiffness settings around their preferred stiffness; our hope is an automated method may reduce the time and experimental burden of determining user preferences. We investigated different machine learning algorithms, sensor subsets, and the impact of user-specific training data on estimation accuracy. We found that a long short term memory (LSTM) algorithm trained on user-specific data from only the affected side, were able to predict user preferred ankle stiffness with an RMSE of 5.2% <inline-formula><tex-math notation="LaTeX">$\pm$</tex-math></inline-formula> 0.3%. The prediction error was less than prosthesis users’ ability to reliably sense stiffness changes (7.7%), which highlights the significance of the performance of our proposed method. This study provides a foundation for an automated approach for predicting user-preferred prosthesis mechanics that would ease the burden of tuning these systems in a clinical setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.