Abstract

A product’s impact on environmental issues in its complete life cycle is significantly determined by decisions taken during product development. Thus, it is of vital importance to integrate a sustainability perspective in methods and tools for product development. The paper aims at the development of a method based on a data-driven approach, which is dedicated to identifying opportunities for improving product sustainability at the design stage. The proposed method consists of two main parts: predictive analytics and simulations. Predictive analytics use parametric models to identify relationships within product sustainability. In turn, simulations are performed using a constraint programming technique, which enables the identification of all possible solutions (if there are any) to a constraint satisfaction problem. These solutions support R&D specialists in finding improvement opportunities for eco-design related to reducing harmful impacts on the environment in the manufacturing, product use, and post-use stages. The results indicate that constraint-satisfaction modeling is a pertinent framework for searching for admissible changes at the design stage to improve sustainable product development within the full scope of socio-ecological sustainability. The applicability of the proposed approach is verified through an illustrative example which refers to reducing the number of defective products and quantity of energy consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.