7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.3233/fi-2018-1729
Copy DOIJournal: Fundamenta Informaticae | Publication Date: Sep 21, 2018 |
Citations: 2 |
Computed Tomography (CT) is an imaging technique that allows to reconstruct volumetric information of the analyzed objects from their projections. The most popular reconstruction technique is the Filtered Back Projection (FBP). It has the advantage of being the fastest technique available, but also the disadvantage to require a high number of projections to retrieve good quality reconstructions. In this article we propose a segmentation method for tomographic volumes composed of few materials. Our method combines existing high-quality variational segmentation frameworks with the data consistency approach used in tomography and discrete tomography. We show that our algorithm performs well under high noise level and with moderately low number of projections, and that the data consistency significantly improves the segmentation, at the cost of only one FBP reconstruction and forward projection.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.