Abstract

As the photovoltaic field endeavors to transition perovskite solar cells (PSCs) to industrial applications, inverted PSCs, which incorporate fullerene as electron transport layers, have emerged as a compelling choice due to their augmented stability and cost-effectiveness. However, these attributes suffer from performance issues stemming from suboptimal electrical characteristics at the perovskite/fullerene interface. To surmount these hurdles, an interface bridging strategy (IBS) is proposed to attenuate the interface energy loss and enhance the interfacial stability by designing a series of A-D-A type perylene monoimide (PMI) derivatives with multifaceted advantages. In addition to passivating defects, the IBS plays a crucial role in facilitating the binding between perovskite and fullerene, thereby enhancing interface coupling and importantly, improving the formation of fullerene films. The PMI derivatives, functioning as bridges, serve as a protective barrier to enhance the device stability. Consequently, the IBS enables a remarkable efficiency of 24.62% for lab-scale PSCs and an efficiency of 18.73% for perovskite solar modules craft on 156×156mm2 substrates. The obtained efficiencies represent some of the highest recorded for fullerene-based devices, showcasing significant progress in designing interfacial molecules at the perovskite/fullerene interface and offering a promising path to enhance the commercial viability of PSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call