Abstract
An optimal cancer chemotherapy regimen should effectively address the drug resistance of tumors while eliciting antitumor-immune responses. Research has shown that non-apoptotic cell death, such as pyroptosis and ferroptosis, can enhance the immune response. Despite this, there has been limited investigation and reporting on the mechanisms of oncosis and its correlation with immune response. Herein, we designed and synthesized a Ru(II) complex that targeted the nucleus and mitochondria to induce cell oncosis. Briefly, the Ru(II) complex disrupts the nucleus and mitochondria DNA, which active polyADP-ribose polymerase 1, accompanied by ATP consumption and porimin activation. Concurrently, mitochondrial damage and endoplasmic reticulum stress result in the release of Ca2+ ions and increased expression of Calpain 1. Subsequently, specific pore proteins porimin and Calpain 1 promote cristae destruction or vacuolation, ultimately leading to cell membrane rupture. The analysis of RNA sequencing demonstrates that the Ru(II) complex can initiate the oncosis-associated pathway and activate both innate and adaptive immunity. In vivo experiments have confirmed that oncosis promotes dendritic cell maturation and awakens adaptive cytotoxic T lymphocytes but also activates the innate immune by inducing the polarization of macrophages towards an M1 phenotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.