Abstract

Security of various cyber-physical systems is a major concern for researchers worldwide. Nowadays, microgrids also form such cyber-physical system to achieve a number of objectives such as enhanced frequency regulation, economic active power sharing, proper reactive power sharing, etc. Communication links are essential in such microgrids to ensure bilateral flow of data to be fed to the secondary controllers of the distributed generators integrated to the power network. This article, therefore, studies the impact of various kinds of cyberattacks viz., false data injection, denial-of-service, and replay attack on the performance of these communication enabled secondary controllers having potential vulnerabilities. Additionally, it presents a unique framework to ensure system stability when communication links are subjected to such attacks. The analysis has been carried out in a microgrid operating in islanded mode where the controller area network (CAN) bus communication network is utilized to form the cyber-physical system. Simulations are performed in MATLAB/Simulink platform and real-time evaluation of the proposed framework has been carried out in a test bed having OPAL-RT (OP5600) simulator and physical CAN devices to form the communication links.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.